Fatty Acids as Biomarkers for Food Web Structure in the Eastern North Pacific Ocean

1. ABSTRACT

- Gas chromatography-mass spectrometry (GC-MS) was used to analyze fatty acid composition of suspended particulate organic matter (POM) and zooplankton (ZP; primarily copepods).
- Investigated if essential fatty acids in ZP reflected diet, in particular, distinguishing contributions from a microbial versus traditional food web.
- 2-dimensional GCxGC with time of flight MS used to distinguish polyunsaturated fatty acid (PUFAs) isomers.

2. INTRODUCTION

- Fatty acids (FAs) prevail in nearly all organisms. Essential FAs synthesized chiefly by primary producers (Phy) and some bacteria (Bac) are transferred throughout higher trophic levels.¹ Therefore, FAs can be used to trace food web connections in aquatic environments.
- Certain FAs are found predominantly in Bac, such as the odd numbered FAs 15:0, 17:0 and 21:0.²
- Gradients in nutrient concentration across the California Current Ecosystem alters food web structure; low nutrient concentrations elongates the food web favoring the microbial loop.² (Fig. 1)

 Studying food web interactions in this dynamic environment is difficult. A proxy of food web structure that integrates space and time is a valuable contribution.⁴

3. SAMPLE COLLECTION

Samples Analyzed

- 1. Particulate Organic Matter (POM) 300L of water from a depth of 4m were filtered through 0.7 μ m Whatman Glass Fiber Filter. Filtrate was composed of mixed phytoplankton, detritus and other unknown particles.
- 2. Zooplankton (ZP) ZP were collected with a 200 μ m MOCNESS net tow. The collected sample consisted of zooplankton (mostly copepods).

Figure 2: Samples were collected in the California *Current Ecosystem,* approximately 9 miles off the coast of San Diego in June 2015.

Jonathan Behrens¹, Brandon Stephens², Neal Arakawa² & Lihini Aluwihare²

¹Department of Chemistry, University of Chicago, ²Geosciences Research Division, Scripps Institution of Oceanography, University of California- San Diego

Polyunsaturated fatty acids (PUFAs) are difficult to separate by normal 1D GC, and so, 2D GC was explored as a better separation tool. As can be seen in Figure 5a and 5b, a number of PUFAs can be detected and quantified in each sample. Figure 6a and 6b show FA mass spectra used to identify FAs in both 1D and 2D GC.

ACKNOWLEDGEMENTS: Funds were provided from the NSF OCE-REU program and the Scripps Summer Undergraduate Research Fellowship. Special thanks to all members of the Aluwihare lab for their support, especially Jenan Kharbush.

6. RESULTS & DISCUSSION							
Total Lipid Extract Composition							
Figure 7a: <i>Bacterial FAs</i> ⁷ • FAs were conserved across trophic							
FA	15:0	17:0	levels as illustrated by the shared				
POM	0.5%	0.4%	FAs in the ZP and POM samples.				
ZP	0.8%	1.2%	(Fig. 4a, 5a, 5b)				
Figure 7b: Saturated FAs							
FA	14:0	16:0	18:0	20:0	22:0	24:0	
POM	8.8%	24.7%	9.1%	0.3%	2.7%	0.3%	
ZP	5.5%	27.2%	7.1%	0.4%	0.8%	1.2%	
Figure 7c: Unsaturated FAs							
FA	16:1	18:1	18:2	18:3	20:5	22:6	24:1
POM	6.0%	0.8%	14.9%	10.1%	6.0%	14.9%	<0.5%
ZP	8.4%	0.1%	11%	3.3%	12.2%	19.6%	<0.5%
							·

Literature Review

- The presence of 20:5 and 16:1 serves as an indicator of phytoplankton in the POM sample.⁶ The large proportion of 20:5 and 16:1 in ZP is highly likely due to the consumption of diatoms by copepods and other zooplankton in this environment.
- The low relative abundance of short chain PUFAs such as 18:3 and higher relative abundance of long chain PUFAs such as 20:5 indicate biosynthetic processes by secondary consumers.⁵

• The presence of 22:6 provides a reasonable indicator of dinoflagellates (protozoa) in the POM and zooplankton diet.⁶ This is tentative evidence of an elongated food web, and is consistent with the relatively oligotrophic (low nutrient) conditions in the region at time of sampling.

7. CONCLUSIONS & FUTURE RESEARCH

- FAs were conserved across the trophic levels examined in this study. Thus FAs serve as a reasonable tracer of food web interactions.
- 2D GCxGC analysis appears to be a promising method for separating and quantifying PUFAs.
- Further research will analyze the hydrogen isotope composition of FAs in ZP and suspended POM collected simultaneously.
- Hydrogen isotopes analysis will help distinguish bacterial from algal sources if FA composition alone cannot.
- FA analysis coupled with isotope analysis may be applied to archived ZP specimens to examine dominant food web interactions in the Northeastern Pacific.

CONTACT INFO: Jonathanbehrens@uhicago.edu, (630) 835-7030

REFERENCES

